

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 710-714

Electrochemical synthesis of 6-amino-5-(3,4-dihydroxyphenyl) pyrimidine

Saied Saeed Hosseiny Davarani^{a,*}, Neda Sheijooni Fumani^a, Hamid Arvin-Nezhad^a, Farzaneh Moradi^b

> ^a Department of Chemistry, Faculty of Science, Shahid Beheshti University, Tehran 1983963113, Iran ^b Department of Chemistry, Faculty of Science, Lorestan University, Khorram-Abad, Iran

Received 24 June 2007; revised 11 November 2007; accepted 21 November 2007

Abstract

Electrochemical oxidation of several catechols is studied in the presence of 4(6)-aminouracil (**3a**) and 6-amino-1,3-dimethyl uracil (**3b**) as nucleophiles in aqueous solution using cyclic voltammetry and controlled-potential coulometry. The results reveal that quinones derived from catechols participate in Michael additions with **3a** and **3b** to give the corresponding catecholamine derivatives via an electron transfer followed by chemical reaction (EC) mechanistic pathway in good yields and purities. © 2007 Published by Elsevier Ltd.

Keywords: Cyclic voltammetry; Electrochemical synthesis; Catechol; 4(6)-Amino uracil; Catecholamine; 6-Amino-1,3-dimethyl uracil

1. Introduction

Pyrimidines represent a broad class of compounds which have received considerable attention due to their wide range of biological activities.^{1–6} Several patents have been reported on the preparation of these heterocycles, derivatives of which are useful as bronchodilators,^{7,8} vasodilators,^{3,4} antiallergic,^{7–9} antihypertensive,¹⁰ and anti cancer^{7,8} agents. Catecholamines have been found in many plants and their synthesis is regulated by stress conditions.¹¹ They are widely used in pharmaceutical preparations. They can be oxidized chemically to *o*-quinone derivatives, and in mammals they are known to function as neurotransmitters with glycogen mobilizing ability.¹²

The importance of uracil derivatives and catecholamines prompted us to synthesize a number of these compounds from catechols and amino uracils. We have investigated the electrochemical oxidation of catechols 1a-c in the presence of uracils 3a and 3b as nucleophiles. The present work has led to the development of a facile and environmentally friendly reagent-less electrochemical method for the synthesis of catecholamine derivatives 5a-f under ambient conditions and in a two-compartment cell using a graphite electrode with high atomic economy.

The cyclic voltammogram of a 2 mM solution of catechol **1a** in 0.2 M sodium acetate solution as supporting electrolyte shows an anodic (A_1) and a corresponding cathodic peak (C_1) , which correspond to the transformation of **1a** to *o*-quinone **2a** and vice versa within a quasireversible two electron reaction (Fig. 1, curve a). A peak current ratio (I_P^{C1}/I_P^{A1}) of nearly unity, particularly during the repetitive recycling of potential, can be considered a criterion for the stability of the *o*-quinones produced at the surface of the electrode under the experimental conditions. In other words, any hydroxylation^{13–20} or dimerization^{21–23} reaction is too slow to be observed on the cyclic voltammetry time-scale.

The oxidation of catechol **1a** in the presence of 6-amino-1,3-dimethyluracil (**3b**) as nucleophile was studied in detail, (Fig. 1, curve b). In this cyclic voltammogram, the cathodic

^{*} Corresponding author. Tel.: +98 21 22431667; fax: +98 21 22431663. *E-mail address:* ss-hosseiny@cc.sbu.ac.ir (S.S.H. Davarani).

^{0040-4039/\$ -} see front matter \odot 2007 Published by Elsevier Ltd. doi:10.1016/j.tetlet.2007.11.134

Fig. 1. Cyclic voltammogram of 2 mM catechol (1a): (a) in the absence of 6-amino-1,3-dimethyluracil (3b), (b) in the presence of 2 mM 6-amino-1,3-dimethyluracil. (c) Cyclic voltammogram of 2 mM 6-amino-1,3-dimethyluracil (3b) in the absence of catechol, at the glassy carbon electrode, in 0.2 M sodium acetate solution. Scan rate: 100 mV s⁻¹, T = ambient temperature.

counterpart of the anodic peak A_1 was decreased strongly due to the reactivity of the formed *o*-quinone (**2a**) at the surface of the electrode with 6-amino-1,3-dimethyluracil (**3b**).^{24–27}

An increase in the A_1 peak current may be due to accumulative current from catechol and the nucleophile. The positive shift of the A_1 peak and negative shift of the C_1 peak in the presence of 6-amino-1,3-dimethyluracil are probably due to the formation of a thin film of product at the electrode surface, inhibiting to a certain extent, the performance of the electrode process that was enhanced during the repetitive cycling of the potential (Fig. 2).^{13,20,28}

Furthermore, it can be seen that, the C_1 peak current increases proportionally to the augmentation of the potential scan rate. In other words, the peak current ratio

Fig. 2. Cyclic voltammogram of 2 mM catechol: (a) in the presence of 2 mM 6-amino-1,3-dimethyluracil (first cycle), (b) in the presence of 2 mM 6-amino-1,3-dimethyluracil (second cycle), at the glassy carbon electrode, in 0.2 M sodium acetate solution. Scan rate: 100 mV s⁻¹, T = ambient temperature.

 $(I_{\rm P}^{C1}/I_{\rm P}^{A1})$ versus scan rate for a mixture of catechol (1a) and 6-amino-1,3-dimethyluracil (3b) in 0.2 M sodium acetate solution, confirms the reactivity of o-quinone (2a) with 6-amino-1,3-dimethyluracil (3b),^{24–27} appearing as an increase in the height of the cathodic peak C_1 at higher scan rates (Fig. 3, curve g). A similar situation was observed when 3b to 1a concentration was decreased. On the other hand, the peak current function for the A_1 peak $(I_{\rm p}^{A1}/v^{1/2})$ decreased on increasing the scan rate (Fig. 3, curve h) and such behavior is indicative of an electron transfer followed by chemical reaction (EC) mechanism.¹⁵ Controlled-potential coulometry was performed in 0.2 M sodium acetate solution, containing 0.5 mmol of 1a and 0.5 mmol of 6-amino-1,3-dimethyluracil (3b) at 0.35 V versus 3 M Ag/AgCl. The electrolysis progress was monitored by cyclic voltammetry (Fig. 4). It was observed that, proportional to the advancement of coulometry, the anodic peak (A_1) decreases. All anodic and cathodic peaks will disappear when the consumption equals about 2e⁻ per molecule of 1a. These observations allow us to propose the pathways in Scheme 1 for the electro-oxidation of catechol (1a) in the presence of 6-amino-1,3-dimethyluracil (3b).

Similar results were observed for the oxidation of **1b** and **1c** in the presence of 6-amino-1,3-dimethyluracil (**3b**), and for **1a–c** in the presence of 4(6)-aminouracil (**3a**). The successful synthesis of the target materials (**5a–f**) was established via IR, ¹H NMR, ¹³C NMR, elemental analysis, and MS spectroscopic methods, the results of which are given in Section 2.

The presence of methyl and methoxy groups at C-3 of **1b** and **1c**, respectively, probably causes the *o*-benzoquinone derived from the oxidation of catechols **2b** and **2c** to be attacked by **3a** and **3b** at C-4 or C-5 to yield two types of

Fig. 3. Typical cyclic voltammograms of 2 mM catechol (1a) in the presence of 2 mM 6-amino-1,3-dimethyluracil (3a), in 0.2 M sodium acetate solution at the glassy carbon electrode (1.8 mm diameter) at various scan rates. Scan rates from (a) to (f) are 50, 100, 200, 400, 800, and 1600 mV s⁻¹, respectively. (g) Variation of peak current ratio (I_p^{C1}/I_p^{A1}) versus scan rate. (h) Variation of peak current function for the A_1 peak $(I_p^{A1}/v^{1/2})$ versus scan rate. T = ambient temperature.

Fig. 4. Cyclic voltammograms of 0.5 mM catechol (1a) in the presence of 0.5 mM 6-amino-1,3-dimethyluracil (3b), at a glassy carbon electrode during controlled-potential coulometry at 0.35 V versus 3 M Ag/AgCl. After the consumption of: (a) 0, (b) 13.1, (c) 31, (d) 50, (e) 68, (f) 75 C. Inset: Variation of peak current (I_P^{41}) versus charge consumed. Scan rate: 100 mV s⁻¹, T = ambient temperature.

products in each case (Scheme 2). Spectroscopic characterization by ¹H NMR revealed the presence of singlets, due to the C-5 aromatic hydrogens ($\delta = 6.36$ and 6.47, $\delta = 6.25$ and 6.28, $\delta = 6.36$ and 6.46, and $\delta = 6.25$ and 6.26 ppm for **5b**, **5c**, **5e**, and **5f**, respectively). Addition to C-4 would lead to the generation of more complex features,

in the ¹H spectra. The *ortho* and *meta* hydrogens would couple, which would result in a doublet with a coupling constant 'J' of about 10 Hz. These results would be consistent with the presence of two adjacent protons on the catechol ring of **6b**, **6c**, **6e** and **6f**.²⁹ Therefore, according to ¹H NMR results we suggest that *o*-quinones **2b** and **2c** are attacked at C-5 selectively by **3a** and **3b**, leading to the formation of products **5b**, **5c**, **5d** and **5f**, respectively.

In conclusion, the results of this work show that catechols are oxidized in solution to their respective o-quinones. The quinones are then attacked by 4(6)-aminouracil (**3a**) or 6-amino-1,3-dimethyluracil (**3b**) to form catecholamine derivatives (Table 1). The advantage of the present work is the development of a one-pot electrolytic method for the synthesis of catecholamine derivatives **5a**-**f** in good yields and purities, with 2e⁻ consumption per molecule of catechol.

2. Apparatus and reagents

Cyclic voltammetry was performed using a computerized 747 Metrohm polarograph. The controlled-potential (potenstiostat) coulometry and controlled-potential (potentiostat) preparative electrolysis were carried out with a Zahrner pp-200 Potentiostat/galvanostat. The working electrode used in the voltammetry experiments was a glassy carbon disc (2.5 mm^2 area), and a platinum wire was used as the counter electrode. The working electrode was used in the controlled-potential coulometry and macro scale electrolysis was an assembly of four graphite rods (25 cm^2

Table 1 Electroanalytical and preparative data

Product	Applied potential (V) 3 M Ag/AgCl	Yield (%)
5a	0.35	86
5b	0.30	88
5c	0.30	84
5d	0.35	91
5e	0.30	94
5f	0.30	90

area) and a large surface platinum gauze constituted the counter electrode (graphite rods from Azar Electrode, Urmieh, Iran and all other electrodes from Metrohm). The working electrode potentials were measured versus 3 M Ag/AgCl.

3-Methyl catechol was reagent grade material from Acros. All other chemicals were reagent or pro-analysis grade materials from Merck. These chemicals were used without any further purification.

2.1. General procedure for the electro-organic synthesis of **5a–f**

Sodium acetate (100 ml of 0.2 M) solution was pre electrolyzed at the chosen potential (see Table 1) in a two-compartment cell. Next, 2 mmol of catechol 1a-c and nucleophile 3a, 3b were added to the cell. Initially the current density was 2 mA/cm² and the electrolysis was terminated when the decay of the current became more than 95%. The process was interrupted during electrolysis (due to the formation of a thin film of product at the surface of the electrode) and the graphite anode was washed in acetone and polished to reactivate it. At the end of electrolysis, a few drops of acetic acid were added to the solution and the cell was placed in a refrigerator overnight. The precipitated solid was collected by filtration and after washing with hot water and drying, the solid products were characterized by IR, ¹H NMR, ¹³C NMR, elemental analysis, and MS.

2.1.1. 6-Amino-5-(3,4-dihydroxyphenyl)pyrimidine-2,4(1H,3H)-dione (**5a**, $C_{10}H_9N_3O_4$)

Mp >270 °C; IR (KBr) (v_{max} cm⁻¹): 3496, 3441, 3248, 2882, 1724, 1592, 1550, 1446, 1372, 1113, 772, 708. ¹H NMR (300 MHz DMSO-*d*₆): δ 5.57 (s, 2H, NH₂), 6.45 (d, *J* = 6 Hz, 1H, aromatic), 6.61 (s, 1H, aromatic), 6.70 (d, *J* = 6 Hz, 1H, aromatic), 8.78 (s, 1H, OH), 8.82 (s, 1H, OH), 10.07(s, 1H, NH), 10.33 (s, 1H, NH). ¹³C NMR (75.4 MHz DMSO-*d*₆): δ 115, 119, 122, 123, 144, 145, 150, 151, 163. Anal. Calcd for C₁₀H₉N₃O₄ (235.196): C, 51.07; H, 3.68; N, 17.87. Found: C, 51.18; H, 3.74; N, 17.89. MS, *m*/*z* (%): 235 (M⁺, 100), 189 (10), 147 (25), 122 (10), 103 (10), 63 (20), 43 (90).

2.1.2. 6-Amino-5-(3,4-dihydroxy-5-methylphenyl)pyrimidine-2,4(1H,3H)-dione (**5b**, $C_{11}H_{11}N_3O_4$)

Mp >270 °C; IR (KBr) (v_{max} cm⁻¹): 3458, 3353, 1721, 1634, 1389, 1579, 1313, 972, 752, 672, 592. ¹H NMR (300 MHz DMSO- d_6): δ 2.09 (s, 3H, methyl), 5.54 (s, 2H, NH₂), 6.36 (s, 1H, aromatic), 6.47 (s, 1H, aromatic), 8.09 (s, 1H, OH), 9.08 (s, 1H, OH), 10.02 (s, 1H, NH), 10.30 (s, 1H, NH). ¹³C NMR (75.4 MHz DMSO- d_6): δ 16.1, 88.63, 116.45, 123.01, 124.24, 124.44, 142.45, 144.93, 150.45, 151.81, 163.58. Anal. Calcd for C₁₁H₁₁N₃O₄ (249.223): C, 53.01; H, 4.45; N, 16.86. Found: C, 53.07; H, 4.42; N, 16.91. MS, m/z (%): 249 (M⁺, 100), 231 (45), 205 (45), 188 (25), 163 (50), 117 (20), 77 (25), 43 (91).

2.1.3. 6-Amino-5-(3,4-dihydroxy-5-methoxyphenyl) pyrimidine-2,4(1H,3H)-dione (**5c**, $C_{11}H_{11}N_3O_5$)

Mp >270 °C; IR (KBr) (v_{max} cm⁻¹): 3401, 1698, 1621, 1596, 1512, 1392, 1207, 1085. ¹H NMR (300 MHz DMSO-*d*₆): δ 3.70 (s, 3H, methoxy), 5.61 (s, 2H, NH₂), 6.25 (s, 1H, aromatic), 6.28 (s, 1H, aromatic), 8.14 (s, 1H, OH), 8.79 (s, 1H, OH), 10.03 (s, 1H, NH), 10.32 (s, 1H, NH). ¹³C NMR (75.4 MHz DMSO-*d*₆): δ 56.09, 88.75, 106.76, 112.52, 122.92, 133.29, 145.94, 148.51, 150.44, 151.86, 163.49. Anal. Calcd for C₁₁H₁₁N₃O₅ (265.222): C, 49.81; H, 4.18; N, 15.84. Found: C, 49.77; H, 4.15; N, 15.79. MS, *m*/*z* (%): 265 (M⁺, 100), 249 (15), 221 (5), 205 (25), 177 (20), 151 (10), 84 (15), 43 (89).

2.1.4. 6-Amino-5-(3,4-dihydroxyphenyl)-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (5d, $C_{12}H_{13}N_3O_4$)

Mp >270 °C; IR (KBr) (v_{max} cm⁻¹): 3435, 3334, 3232, 1696, 1641, 1585, 1381, 1272, 1088, 780, 730. ¹H NMR (300 MHz DMSO- d_6): δ 3.12 (s, 3H, methyl), 3.32 (s, 3H, methyl), 6.03 (s, 2H, NH₂), 6.44 (d, J = 8 Hz, 1H, aromatic), 6.58 (s, 1H, aromatic), 6.72 (d, J = 8 Hz, 1H, aromatic) 8.81 (s, 1H, OH), 8.84 (s, 1H, OH). ¹³C NMR (75.4 MHz DMSO- d_6): δ 28.05, 30.45, 89.30, 116.13, 119.50, 122.81, 124.78, 144.62, 145.55, 151.35, 152.24, 161.08. Anal. Calcd for C₁₂H₁₃N₃O₄ (263.249): C, 54.75; H, 4.98; N, 15.96. Found: C, 54.81; H, 5.02; N, 15.99. MS, m/z (%): 263 (M⁺, 100), 206 (25), 189 (25), 150 (60), 122 (25), 81 (10), 58 (75).

2.1.5. 6-Amino-5-(3,4-dihydroxy-5-methylphenyl)-1,3dimethylpyrimidine-2,4(1H,3H)-dione (**5e**, $C_{13}H_{15}N_3O_4$)

Mp >270 °C; IR (KBr) (ν_{max} cm⁻¹): 3476, 3416, 1693, 1648, 1596, 1314, 1200, 1017, 771, 608. ¹H NMR (300 MHz DMSO-*d*₆): δ 2.10 (s, 3H, methyl), 3.12 (s, 3H, methyl), 3.37 (s, 3H, methyl), 6.02 (s, 2H, NH₂), 6.36 (s, 1H, aromatic), 6.46 (s, 1H, aromatic), 8.12 (s, 1H, OH), 9.10 (s, 1H, OH). ¹³C NMR (75.4 MHz DMSO-*d*₆): δ 16.0, 27.5, 29.9, 89.03, 116.2, 123.4, 124.1, 142.2, 144.6, 150.8, 151.7, 160.5. Anal. Calcd for C₁₃H₁₅N₃O₄ (277.27): C, 56.31; H, 5.45; N, 15.15. Found: C, 56.29; H, 5.45; N, 15.17. MS, *m*/*z* (%): 277 (M⁺, 100), 220 (25), 203 (25), 191 (25), 164 (50), 136 (50), 77 (20), 57 (70), 30 (30).

2.1.6. 6-Amino-5-(3,4-dihydroxy-5-methoxyphenyl)-1,3dimethylpyrimidine-2,4(1H,3H)-dione (**5f**, $C_{13}H_{15}N_3O_5$)

Mp >270 °C; IR (KBr) (v_{max} cm⁻¹): 3419, 3336, 3248, 1693, 1638, 1587, 1519, 1332, 1213, 1095, 1031, 849, 778, 674. ¹H NMR (300 MHz DMSO-*d*₆): δ 3.33 (s, 3H, methyl), 3.38 (s, 3H, methyl), 3.70 (s, 3H, methoxy), 6.08 (s, 2H, NH₂), 6.25 (s, 1H, aromatic), 6.26 (s, 1H, aromatic), 8.19 (s, 1H, OH), 8.82 (s, 1H, OH). ¹³C NMR (75.4 MHz DMSO-*d*₆): δ 28.05, 30.44, 56.09, 89.66, 107.15, 112.81, 123.85, 133.56, 146.13, 148.78, 151.36, 152.26, 161.00. Anal. Calcd for C₁₃H₁₅N₃O₅ (293.27): C, 53.24; H, 5.15; N, 14.33. Found: C, 53.29; H, 5.18; N, 14.35. MS, *m*/*z* (%): 293 (M⁺, 100), 207 (20), 180 (50), 151 (20), 136 (10), 78 (10), 58 (85), 32 (50).

Acknowledgment

Financial support from the Research Affairs of Shahid Beheshti University is gratefully acknowledged.

References and notes

- Castle, R. N.; Philips, S. D. In Katritzky, A., Rees, C., Eds.; Comprehensive Heterocyclic Chemistry; Boulton, A. J., McKillop, A., Eds.; Pergamon: Oxford, 1984; Vol. 3, p 329ff.
- Melik-Ogan Zhanyan, R. G.; Khachatryan, V. E.; Gapoyan, A. S. Russ. Chem. Rev. 1985, 54, 262–268.
- Taylor, E. C.; Knopf, R. J.; Meyer, R. F.; Holmes, A.; Hoefle, M. L. J. Am. Chem. Soc. 1960, 82, 5711–5718.
- Figueroa-Villar, J. D.; Carneiro, C. L.; Cruz, E. R. *Heterocycles* 1992, 34, 891–894.
- Campaigne, E.; Eliss, R. L.; Bradford, M.; Ho, J. J. Med. Chem. 1969, 12, 339–342.
- Blume, F.; Arndt, F.; Ress, R. Ger. Patent 3712782, 1988; Chem. Abstr. 1989, 110, 154312e.
- Coates, W. J. Eur. Patent 351058, 1990; Chem Abstr. 1990, 113, 40711.
- Ramsey, A. A. U.S. Patent 3830812, 1974, FMC Corp.; Chem. Abstr. 1974, 81, 13617.
- Kitamura, N.; Onishi, A. Eur. Patent 163599, 1984; Chem Abstr. 1984, 104, 18639.
- Raddatz, P.; Bergmann, R. Ger. Patent 360731, 1988; *Chem Abstr.* 1988, 109, 54786.
- 11. Kulma, A.; Szopa J. Plant Sci. 2007, 172, 433-440.

- Afkhami, A.; Nematollahi, D.; Madrakian, T.; Khalafi, L. Electrochim. Acta 2005, 50, 5633–5640.
- Nematollahi, D.; Rafiee, M. J. Electroanal. Chem. 2004, 566, 31– 37.
- Papouchado, L.; Petrie, G.; Adams, R. N. J. Electroanal. Chem. 1972, 38, 389–395.
- Papouchado, L.; Petrie, G.; Sharp, J. H.; Adams, R. N. J. Am. Chem. Soc. 1968, 90, 5620–5621.
- 16. Sioda, R. E. J. Phys. Chem. 1968, 72, 2322-2330.
- Sioda, R. E.; Frankowska, B. J. Electroanal. Chem. 2004, 568, 365– 370.
- Sioda, R. E.; Frankowska, B. Tetrahedron Lett. 2005, 46, 2747– 2749.
- Young, T. E.; Griswold, J. R.; Hulbert, M. H. J. Org. Chem. 1974, 39, 1980–1982.
- Nematollahi, D.; Habibi, D.; Rahmati, M.; Rafiee, M. J. Org. Chem. 2004, 69, 2637–2640.
- Nematollahi, D.; Rafiee, M.; Samadi-Maybodi, A. *Electrochim. Acta* 2004, 49, 2495–2502.
- Rayn, M. D.; Yueh, A.; Wen-Yu, C. *Electrochem. Soc.* 1980, 127, 1489–1495.
- Davarani, S. S. H.; Nematollahi, D.; Shamsipur, M.; Mashkouri Najafi, N.; Masoumi, L.; Ramyar, S. J. Org. Chem. 2006, 71, 2139– 2142.
- Nematollahi, D.; Tammari, E. *Electrochim. Acta* 2005, 50, 3648– 3654.
- 25. Bernier, J. L.; Henichart, J. P. J. Org. Chem. 1981, 46, 4197-4198.
- 26. Dotzauer, B.; Troschütz, R. Synlett 2004, 1039-1043.
- Alizadeh, A.; Nematollahi, D.; Habibi, D.; Hesari, M. Synthesis 2007, 1513–1517.
- Nematollahi, D.; Goodarzi, H. J. Electroanal. Chem. 2001, 510, 108– 114.
- Silverstein, R. M.; Webster, F. M. Spectrometric Identification of Organic Compounds, 6th ed.; Wiley: New York, 1998; p 212.